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Abstract

The main contribution of this thesis is the development and application of a modified

Exponentially Weighted Moving Algorithm (EWMA) algorithm, and its ability to robustly

function in the face varying numbers of bad (malicious or malfunctioning) Special

Protection System (SPS) nodes. Simulation results support the use of the proposed

modified EWMA reputation based trust module in SPSs within a smart grid environment.

This modification results in the ability to easily maintain the system above the minimum

acceptable frequency of 58.8 Hz at the 95% confidence interval, when challenged with test

cases containing 5, 10 and 15 bad node test cases out of 31 total load nodes.

These promising results are realized by incorporating the optimal modified EWMA

strategy, as identified by Receiver Operating Characteristic (ROC) techniques, where an

optimal strategy is revealed. The optimal strategy maximizes true positives while

minimizing false positives.

Implementation of a modified EWMA within a reputation based special protection

system does not account for each scenario that an electrical power engineer may face in

the field. Instead, this research demonstrates that such an algorithm provides a robust

environment to test within, in the hope of successfully meeting challenges and/or

opportunities of the future.
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Ẑ j Modified EWMA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

kV kilovolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiii



List of Abbreviations

Abbreviation Page

ICS Industrial Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . 1

SCADA Supervisory Control and Data Acquisition . . . . . . . . . . . . . . . . 1

CI Critical Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

EISA Energy Independence and Security Act of 2007 . . . . . . . . . . . . . . 3

FERC Federal Energy Regulatory Commission . . . . . . . . . . . . . . . . . 3

PDD Presidential Decision Directive . . . . . . . . . . . . . . . . . . . . . . 3

SPS Special Protection System (also known as Special Protection Scheme) . 3

i.e. id est . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

EWMA Exponentially Weighted Moving Averages . . . . . . . . . . . . . . . . 6

EO Executive Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

NSTAC National Security Telecommunications Advisory Committee . . . . . . 8

IT Information Technology . . . . . . . . . . . . . . . . . . . . . . . . . . 9

NIST National Institute of Standards and Technology . . . . . . . . . . . . . . 9

PLC Programmable Logic Controllers . . . . . . . . . . . . . . . . . . . . . 10

HMI Human Machine Interface . . . . . . . . . . . . . . . . . . . . . . . . . 11

RTU Remote Terminal Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

e.g. exempli gratia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

HVDC High Voltage Direct Current . . . . . . . . . . . . . . . . . . . . . . . . 19

etc. et cetera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

GRS Generator Rejection Scheme . . . . . . . . . . . . . . . . . . . . . . . . 22

TP True Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

FN False Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

TN True Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

FP False Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xiv



TPR True Positive Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

FPR False Positive Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

COTS Commercial Off-The-Shelf . . . . . . . . . . . . . . . . . . . . . . . . 38

IED Intelligent Electronic Device . . . . . . . . . . . . . . . . . . . . . . . 39

Q-Q Quantile-Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ROC Receiver Operating Characteristics . . . . . . . . . . . . . . . . . . . . 47

ANOVA Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv



ENHANCING TRUST IN THE SMART GRID BY APPLYING A

MODIFIED EXPONENTIALLY WEIGHTED MOVING AVERAGES

ALGORITHM

1 Introduction

This chapter provides a general introduction of the thesis subject area in a general

way and an overview of the problem. The importance and motivation of the problem

addressed is also presented. Finally, this chapter outlines research goals and the structure

of research contained in this theses and also an overview of the remaining parts of the

thesis itself.

1.1 Overview

Identified as one of our nation’s critical resources [14], the electric power grid is vital

not only to the national security of the Unites States, but also its way of life. President

Obama astutely summarized a precautionary tale to those that take on today’s

technological challenges:

It’s the great irony of our Information Age–the very technologies that

empower us to create and to build also empower those who would disrupt and

destroy [45].

The electric power system falls under the broad umbrella of Industrial Control

Systems (ICS), and are managed through the use of Supervisory Control and Data

Acquisition (SCADA) equipment and processes, with and it associated attributes, both

positive and negative. It is important not to frame any discussion on improving

1



performance and reliability of the electrical power system with these considerations in

mind, but to also ensure that security and robustness are key attributes, due to the critical

nature of this man-made resource.

1.2 Background

The commercial use of electricity began in the late 1870s when arc lamps were used

for lighthouse illumination and street lighting, and the first complete electric power

system (comprising a generator, cable, fuse, meter and loads) was built by Thomas Edison

in September 1882 [39]. Today, almost all of the utilities in the United States and Canada

are part of one very large and enormously complex interconnected system.

Complicating the issue is the fact that the electric power grid is not owned nor

managed by one single organization. Rather, it is the conglomeration of numerous

companies, usually regional in nature, interconnected to allow power to flow to your

home. Key to understanding the critical infrastructure issues associated with the electric

power grid is the ability frame the grid a one large information system. It is essential that

any modifications made to current systems account for emerging technologies, to allow

seamless integration now and and the future.

With smart grid technologies taunting new abilities such as energy management and

real-time pricing, there has been much recent discussion on what distribution systems of

the future can and should look like. That is why it is important to understand the

characteristics of the smart grid and how to frame accurately new challenges may be

associated with its implementation.

Integrated throughout this security challenge and modernization effort is governance

primarily at the federal level. The critical infrastructure discussion began in earnest root in

the late 1990’s, with initial reports to the President addressing security of the electric

power control networks and the electrical power grid [49]. The security of the nation’s
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Critical Infrastructure (CI) was thrusted into the forefront following the tragic events of

September 11th, 2001.

By 2007, the Energy Independence and Security Act of 2007 (EISA) had tasked the

Federal Energy Regulatory Commission (FERC) with specific responsibilities with regard

to the adoption of smart grid guidelines and standards [52]. Specific challenges that must

be addressed with any smart grid enhancements are identified in Section 2.3.

It is with the basic background identified in this section that this and related research

has built simulation environments to help ensure new technology development not only

addresses these concerns, but also meet evolving federal regulation standards. As

identified in Presidential Decision Directive (PDD)-63, President Clinton’s intent at the

time was that ”The United States will take all necessary measures to swiftly eliminate any

significant vulnerability to both physical and cyber attacks on our critical infrastructures,

including especially our cyber systems” [14]. The research conducted within this thesis,

enhancing the reliability of the electrical power grid’s special protection systems, is

certainly in alignment with the former President’s vision and should be in the mind of any

similar researcher. This high-level background helps frame the problem statement that this

research hopes to address.

1.3 Problem Statement

An incorrect decision made by a electric power grid Special Protection System

(SPS), also known as Special Protection Scheme, can have drastic consequences and

result in needless power service interruption. Current protection system methodology with

regard to load shedding do not accurately determine optimal loads for shedding.

Therefore, it is often the case that good (i.e., cooperating, non-malicious and/or

non-malfunctioning) nodes are incorrectly identified as untrusted and bad (i.e., not

cooperating, malicious and/or malfunctioning) nodes are incorrectly identified as trusted.
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1.4 Research Goals

The goal of this research is to develop a robust algorithm that will efficiently and

accurately calculate reputation based trust within electrical power grid special protection

systems, allowing the system to maintain an acceptable frequency level and accurately

classify good and bad nodes. The algorithm will be tunable to specific protection system

applications, adjusting for individual characteristics of each application, such as

associated background noise.

1.5 Contributions

Research contained in this thesis is driven by a novel approach to determining trust

within the electric power grid. Specifically, the creation and subsequent testing of a

unique algorithm to determine trust within an SPS promises to not only provide accurate

trust calculations, but minimize associated error.

1.6 Chapter Review

This chapter presented the research topic at a very high level, and the remainder of

this document is to fully document the research process of this thesis.

Chapter 2 presents an overview of literature that supports the research design and key

simulation parameters. This chapter also presents current research in the area.

Chapter 3 comprises the experimental methodology, to include goals and hypothesis,

testing environment and associated test cases and an overview of how results gathered

with be analyzed. It is within this chapter that the proposed algorithm is presented.

Chapter 4 reports the results from applying the design identified in Chapter 3. Both

observational and interpretive analysis techniques are used to convey a clear

understanding of the impact of this research.
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Chapter 5 identifies conclusions and recommendations for future research in this

topic area. The conclusions assert whether or not results from this research warrant

additional consideration and or immediate implementation. Throughout the course of this

research, numerous ideas presented themselves as promising research leads, but were

simply outside the scope of this thesis. Chapter 5 presents these ideas and frames their

significance in the context of expanding the body of work in this topic area.

5



2 Literature Review

2.1 Introduction

This chapter provides brief introductory material, as well as a review of literature,

concepts and current research revelent to the protection of critical infrastructures, the

nation’s electric power system and the components of associated Supervisory Control and

Data Acquisition (SCADA) management systems. Additionally, challenges associated

with emerging smart grid technologies and their implementation are presented. Then, an

overview of Special Protection Systems (SPS)s, also known as Special Protection

Schemes, and current research related to that topic area is addressed. This chapter

concludes with a look at traditional Exponentially Weighted Moving Averages (EWMA)

implementations and its direct applicability to an SPS.

Integral to this research is governance pertaining to these topic areas, as regulation

and oversight guide not only the future of the electric power grid, but also mandate

constraints in which evolutions to this topic area must adhere. Therefore, the literature

review contained herein begins with an overview of how the electrical power grid fits the

definition of Critical Infrastructure (CI) and a survey of relevant governance.

2.2 Critical Infrastructure

All characteristics of the US electric power system, including vulnerabilities, have

garnered much deserved attention over recent years, as the system itself clearly falls into

the category of critical infrastructure. On July 15, 1996, President Clinton signed

Executive Order 13010 establishing the President’s Commission on Critical Infrastructure

Protection [13]. This Executive Order (EO) defined ”infrastructure” as:

The framework of interdependent networks and systems comprising

identifiable industries, institutions (including people and procedures), and
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distribution capabilities that provide a reliable flow of products and services

essential to the defense of government at all levels, and society as a whole.

Table 2.1: Eight Critical Infrastructures According to E.O. 13010 [13]

No. Government Sector(s)

1. Telecommunications

2. Electrical Power Systems

3. Gas and Oil Storage and Transportation

4. Banking and Finance

5. Transportation

6. Water Supply Systems

7. Emergency Services

8. Continuity of Government

E.O. 13010 broadened the list of critical infrastructure sectors to include electrical

power system by name as identified in Table 2.1. In 1998, President Clinton continued the

evolution of the term critical infrastructure to include those physical and cyber-based

systems essential to the minimum operations of the economy and government. They

include, but are not limited to, telecommunications, energy, banking and finance,

transportation, water systems and emergency services, both governmental and private[14].

Additionally, President Clinton expressly acknowledged that ”Many of the nation’s

critical infrastructures have historically been physically and logically separate systems

that had little interdependence”.

In a 1996 study, it was determined that over 90 percent of the nation’s critical

infrastructures were privately owned and operated [34]. This privatization certainly

extends to both SCADA systems, and specifically the US electrical power systems.
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Therefore, it should be no surprise that there is a wealth of governance guiding the power

grid’s security and modernization. Of specifc interest to this research is governance

pertaining to these topic areas, as regulation and oversight guide not only the future of the

electric power grid, but also mandate constraints in which evolutions to this topic area

must adhere. It is within this context that governance is reviewed.

2.3 Governance

In March 1997, the National Security Telecommunications Advisory Committee

(NSTAC) issued a report to the President that assessed the security of the electric power

control networks and electric power grid. The report warned of utilities rapidly expanding

their use of information systems and interconnecting previously isolated networks because

of competition, aging proprietary systems, and reductions in staff and operating margins

[49].

Although Commission identified electronic intrusion of the utilities’ information

systems and networks as an emerging threat, it found that the industry considered the

primary threat to information systems to be from insiders. Even though the industry at the

time focused much of its attention toward the ever-present insider threat, the NSTAC made

the determination that substations presented the most significant information security

vulnerability in the power grid due in part to the vulnerabilities associated with

widespread use of dial-up modems and the use of public networks.

In early 2001, the NSTAC Information Sharing for Critical Infrastructure Task Force

consolidated detailed research and analysis done over recent years, and also requested

industry advice and recommendations for revision of the National Plan, in order to provide

sound recommendations to the President [50]. They framed the problem very well when

they stated, ”While Government is focusing on protecting national security, preventing

future attacks, and identifying and punishing attackers, private owners of infrastructures

are more concerned with common business imperatives. As a result of this dichotomy, any
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solution to, or recommendation for, the protection of critical infrastructures require the

participation of private industry in concert with the Government.

By 2007, the electric industry’s increased incorporation of Information Technology

(IT) systems as part of the smart grid effort now garnered congressional concern.

evaluating the growing concern that smart grid efforts, if not implemented securely, could

cause the electric grid to become more vulnerable to attacks and loss of services.

As a result, the Energy Independence and Security Act of 2007 (EISA) provided the

National Institute of Standards and Technology (NIST) and Federal Energy Regulatory

Commission (FERC) with specific responsibilities with regard to coordinating the

development and adoption of smart grid guidelines and standards.

As the audit, evaluation and investigative arm of the United States Congress, the

Government Accounting Office was asked to[52]:

1. Assess the extent to which NIST has developed smart grid cybersecurity guidelines

2. Evaluate FERC’s approach for adopting and monitoring smart grid cybersecurity

and other standards

3. Identify challenges associated with smart grid cybersecurity

With respect to smart grid systems, GAO identified the six key challenges identified

in Table 2.2. To address these challenges, the National Institute of Standards and

Technology developed and issued a first version of its smart grid cyberspace guidelines in

August of 2010. The agency developed the guidelines for entities such as electric

companies involved in implementing smart grids[52]. It is important to note that as the

transition to smart grid technologies advances, smart grid data availability places

considerably more stringent demands on the communication and control system than

traditional SCADA systems do [36]. Therefore, it is necessary to understand the

underlying legacy SCADA systems, their current usage in the operation of the electric
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Table 2.2: GAO-Identified Challenges to Securing Smart Grid Systems [52]

No. Specific Challenge
1. Aspects of the regulatory environment may make it difficult to

ensure smart grid systems cybersecurity
2. The electric industry does not have an effective mechanism for

sharing information on cybersecurity
3. Utilities are focusing on regulatory compliance instead of

comprehensive security
4. Consumers are not adequately informed about the benefits,

costs, and risks associated with smart grid systems
5. There is a lack of security features being built into certain

smart grid systems
6. The electricity industry does not have metrics for evaluating

cybersecurity

power system and consideration that must be made when attempting to make

modifications.

2.4 SCADA

Industrial Control Systems, such as electric power generation plants, are large,

distributed complexes, requiring plant operators to continuously monitor and control

many different sections of the plant to ensure its proper operation [34]. This monitoring is

accomplished through the use of SCADA systems.

2.4.1 Overview. SCADA is short for Supervisory Control And Data Acquisition,

and as the implies, the focus of SCADA is on the supervisory level of operation. It is

generally used to control dispersed assets using centralized data acquisition and

supervisory controls[34]. As such, it is a purely software package that is positioned on top

of hardware to which it is interfaced, in general via Programmable Logic Controllers

(PLC), or other commercial hardware modules [18]. Initially, ICSs had little resemblance

to traditional IT systems in that ICSs were isolated systems running proprietary control

protocols using specialized hardware and software [34]. SCADA is pervasive in the
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generation and distribution of energy with each utility and cooperative having its own

SCADA system [23].

2.4.2 Architecture. A SCADA system is identified by to two basic layers: the

”client layer” which enables the man machine interface and the ”data server layer” which

is responsible for the majority of process data control activities [18].

The SCADA master station consists of the SCADA master servers and the Human

Machine Interface (HMI). The master station is located in a central control center from

where operators can monitor the entire system. SCADA master servers run the server-side

applications that communicate with the Remote Terminal Unit (RTU). The SCADA

master servers poll the RTUs for data and send control messages to supervise and control

the utility’s physical infrastructure. Backup servers are used to increase fault-tolerance of

the system [24].

Data servers communicate with devices in the field through PLCs. PLCs are

connected to the data servers either directly or via networks or field buses that are

proprietary (exempli gratia (e.g.) Siemens H1), or non-proprietary (e.g. Profibus) [18] The

data servers are responsible for data acquisition and handling (e.g. polling controllers,

alarm checking, calculations, logging and archiving) on a set of parameters. This pulling

of data from remote locations permits operators to monitor and control remote assets and

processes in real time.

2.4.3 Operation. To provide real-time data updates from the field, a SCADA

system needs remote sensory and communications capabilities. Electronic devices called

RTUs are located at each point where measurements are to be taken or where process

equipment is to be controlled. The central computer continuously polls the field-based

RTU to fetch their current measurement message containing updated values, and repeating
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that operation with subsequent RTUs, until all have been processed. That sequence is then

repeated over and over, without end [58].

2.4.4 Threats and Vulnerabilities. There are numerous sources and motivations

for disruption within a SCADA system as identified in Table 2.3

Table 2.3: Sources and Motivations for Utility Disruptions and Attack [28]

Source Reason
Industrial sabotage or theft Financial advantage in insider trading or compet-

ing vendor partnerships
Concentrated physical and
cyber attack

Destruction, terror or activism

Vendor compromise Easier to target the supplier than the defended
infrastructure itself [26]

Technical design error or
environmental influence

Hardware or code; network design, installation
and configuration; or interferences from other
technologies in the environment

Natural disasters Earthquakes, tornadoes, volcanoes, fires, thunder-
storms and snow storms

Operator error Misjudgement, misconfiguration, or failure to re-
member operational details, resulting in dangerous
or costly results

Additionally, there have been many real-world incidents affecting SCADA systems,

and many others never publicized, that clearly illustrate vulnerabilities [26] [16]:

• During the Cold War, the U.S. provided Trojan firmware to the Soviet Union,

causing a pipeline to explode in one of the world’s largest non-nuclear explosions

[26].

• In 2000, a disgruntled employee rigged a computerized control system at a water

treatment plant in Australia, releasing more than 200,000 gallons of sewage into

parks, rivers and the grounds of a Hyatt hotel [25]
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• In 2001, hackers hacked CAL-ISO, Californias primary power grid operator, and

were not discovered for 17 days [11]

• In 2003, the Slammer Worm took Ohios Davis-Besse nuclear plant safety monitor

offline for five hours [26]

• In 2008, a senior Central Intelligence Agency official, Tom Donahue, told a meeting

of utility company representatives in New Orleans that a cyberattack had taken out

power equipment in multiple regions outside the U.S. Mr. Donahue stated that the

outage was followed with extortion demands [25]

Cyber attacks on U.S. SCADA networks have the potential to affect supplies of

gasoline, electricity or water, ultimately impacting stock prices on a global level [16]. It is

now clear that SCADA system in general, and the electric power system specifically, has

numerous vulnerabilities and protecting it warrants additional consideration. Therefore,

reviewed of power production and distribution system on the U.S. power grid is

warranted.

2.5 Electrical Power Generation

Continuous control of electric power generation to match changes in load has been a

standing problem which has attracted the attention of the workers and researchers of

power operation and control [8]. This is due to the fact that unpredictable changes in load

frequently cause power generation-consumption mismatches, adversely affecting the

quality of generated power due to the offsetting of the desired frequency value.

2.5.1 Characteristics. Although distribution circuits come in many different

configurations and circuit lengths, most share many common characteristics as identified

in Figure 2.1. These components include the generation station, generating step up
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transformers, the transmission lines, substation step down transformers and then the end

customers.

 

40 

Electrical energy is produced by a generating station. This electrical energy is 

up-converted to a high voltage value by a step-up transformer located at the transmission 

substation. This high voltage value minimizes power losses in transmission of electrical energy 

over long distances. High voltage energy is transferred from the transmission substation to power 

substations by high voltage transmission lines. A step-down transformer located at the power 

substation down converts the received voltage to a lower value, normally a few thousand volts. 

Distribution lines carry the voltage energy from the power substation to the customers. At the 

customer’s location, a power step-down transformer converts the voltage energy to 120 volts and 

240 volts before it enters the consumer’s home or office. This process is a very simplified view 

of a power production and distribution system based on the information found in [1] and [50]. 

Multiple SCADA sensors and actuators are located throughout the system to monitor and control 

power generation and distribution. The SCADA system controls the amount of power generated 

to meet user demands, while insuring the power distribution system is not overloaded. 

 
Figure 5. Power Production and Distribution System image by J. Messerly [1] 

Figure 5 is a very simplified view of the power production and distribution system, which 

does not consider line or component loss due to resistance or multiple paths from sources to 

sinks. 
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Figure 2.1: Power Production and Distribution System [42]

2.5.2 Operation. Deviation of frequency from its nominal value should be

minimized and kept within rigid limits in order for electric power consuming and

frequency dependent control equipment to operate satisfactorily [8]. Additionally, turbines

used for power production are designed to operate at specific frequencies and incur stress

related damage when operating at higher or lower frequencies. Manufacturers often

provide abnormal operating characteristics, recognizing that each generation device will

have its own unique limits. Figure 2.2 illustrates the operational limits of a representative

steam turbine with the following characteristics as measured in Hertz (Hz) [8]:

• The areas between 59.5 Hz and 60.5 Hz are areas of unrestricted time operating

frequency limits

• Operation between 58.5 Hz and 57.9 Hz is permitted for ten minutes before turbine

blade damage is probable
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If a unit operates within this frequency band for one minute, then nine more

minutes of operation within this band are permitted over the life of the blade [7]

 

20 

underfrequency relays typically trip if a generator falls below 57.5 Hz for more than 10 

seconds or trip instantly if the frequency drops below 56.0 Hz.  In order to prevent a 

generator from tripping off on underfrequency relays or from operating at lower than 

normal frequencies for extended periods, SPSs employ load shedding schemes to reduce 

the loads on the generators.  Figure 1 illustrates the typical operating frequency 

limitations for steam turbines. 

 

 

Figure 1.  Steam Turbine Partial or Full Load Operating Limitations During Abnormal 

Frequency, Representing Composite Worst-Case Limitations of Five Manufacturers [40] 
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Figure 2.2: Steam Turbine Partial or Full Load Operating Limitations During Abnormal
Frequency [1]

With regard to operational limits, it is important to remember that time spent in a

given frequency band is cumulative and, for preventative maintenance purposes, is usually

considered independent of the time accumulated in any other band. Since fatigue life is

used up during abnormal underfrequency operation, the time spent in an underfrequency

event should be minimized as much as possible. It is with these operational limit
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considerations in mind that several researchers have created a minimum acceptable

frequency of 58.8 Hz [32] [21] [54], as operating below this frequency threshold could

result in unwanted damage to internal components.

With smart grid technologies taunting new abilities such as energy management and

real-time pricing, there has been much recent discussion on what distribution systems of

the future can and should look like. It is important to understand the characteristics of the

smart grid, in order to develop an approach that is robust enough to apply in today’s

environment as well as integrate seamlessly into the smart grid to take advantage of the

opportunities it purports.

2.6 Smart Grid

The power utility industry has been utilizing advances in communication and IT over

the years in order to improve efficiency, reliability, security and quality of service [47].

Momentum for the smart grid vision has increased recently due to policy and regulatory

initiatives [17] [63].

The smart grid is envisioned to take advantage of all available modern technologies

in transforming the current electrical grid into one that functions more intelligently. There

are numerous potential benefits that smart grid technology is expected to facilitate,

including:

• Displacement of about half of our nation’s net oil imports [37]

• Better situational awareness and operator assistance [47]

• Reduction in U.S. carbon dioxide emissions by about 25 percent [37]

• Integration of renewable resources including solar, wind, and various types of
energy storage [47]

• Reductions in emissions of urban air pollutants of 40 percent to 90 percent [37]

There are several newly developed and/or tailored smart grid attributes to help the

nation achieve these advertised benefits.
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2.6.1 Attributes. The first such attribute that must be understood is demand

response. Demand response allows consumer load reduction in response to emergency

and high-price conditions on the electricity grid [59]. Such conditions are more prevalent

during peak load or congested operation.

The second relevant attribute of smart grid technology is its implementation of load

rejection. Load rejection as an emergency resource to protect the grid from disruption is

well understood and is implemented to operate either by system operator or through

underfrequency and/or under-voltage relays [47]. The smart grid enhancement is that load

rejection schemes can be enhanced to act more intelligently and be based on customer

participation.

2.6.2 Threats and Vulnerabilities. Although threats of economic and industrial

sabotage have long existed, the international proliferation of the Internet makes cyber

economic and industrial sabotage an especially daunting and potentially

economy-crippling threat [41] [65].

As we can see, vulnerabilities have not gone away ( and maybe got worse).

Therefore, it is important to understand how to recover from a situation once it happens. It

will happen (cite instances).

Several other grid-related impacts are likely to emerge when adding a significant new

load for charging plug-in hybrid vehicles. Higher system loading could impact the overall

system reliability when the entire infrastructure is used near its maximum capability for

long periods [37].

”Over the past several years, we have seen cyber attacks against critical

infrastructures abroad, and many of our own infrastructures are as vulnerable as their

foreign counterparts,” Director of National Intelligence Dennis Blair recently told

lawmakers. ”A number of nations, including Russia and China, can disrupt elements of

the U.S. information infrastructure [25]”. The growing reliance of utilities on
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Internet-based communication has increased the vulnerability of control systems to spies

and hackers, according to government reports.

It is not wise to imagine any internet-based communications to be completely secure

and free from attack. The U.S. electrical grid is no different. Instead, researchers and

developers must focus their resources and efforts to adapting to and overcoming such

malicious intrusions and even routine equipment malfunctions. One such mechanism that

is employed within the electric power systems is the Special Protection System (SPS)

(also known as Special Protection Scheme).

2.7 Special Protection System

A special protection system is specifically designed to detect abnormal system

conditions, preserve system stability and are designed to take pre-planned corrective

action in response to certain disturbances, to mitigate the consequence of abnormal

conditions [4][38][67]. These systems are often perceived as an attractive alternative to

constructing new transmission lines because they can be placed in service relatively

quickly and inexpensively.

In their most recent survey, CIGRÉ, the Council on Large Electric Systems,

identified 113 special protection schemes in operation [66]. Additionally, the IEEE

CIRGÉ survey concurred with these results and identified generator rejection as the most

commonly used SPS [4]. The most common SPS types are consolidated in Table 2.4.

Related work in this field investigated the creation of a SPS that estimated load

shedding levels under transient situations by using communication from regional

generators and key loads [21][32][54]. This research will also focus on these aspects of an

SPS, as generation rejection and load shedding are the most common responses employed

by SPSs worldwide[3]. SPSs are designed to preserve system stability in the face of a

large variety of disturbances, helping to prevent violent and disastrous effects.
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Table 2.4: Percentages of Most Common SPS Types [3][66]

Types of SPS Percentage

Generator Rejection 21.6

Load Rejection 10.8

Underfrequency Load Shedding 8.2

System Separation 6.3

Turbine Valve Control 6.3

Load & Generator Rejection 4.5

Stabilizers 4.5

HVDC Controls 3.6

Out-of-Step Relaying 2.7

Discrete Excitation Control 1.8

Dynamic Braking 1.8

Generator Runback 1.8

Var Compression 1.8

Combination of Schemes 11.7

Others 12.6

An example of such a disturbance is possible in systems that are interconnected by

long or weak tie lines, which may be heavily loaded. When this scenario occurs, the

power system may break apart in ways that are not predictable and possible create power

system islands having large generation-to-load imbalances. Islanding occurs when a

distributed generator (or group of distributed generators) continues to energize a portion

of the utility system that has been separated from the main utility system [6]. It is not

desirable for a distributed generator to island any part of the utility system as this can lead

to safety and power quality problems such as the generation-to-load imbalance previously
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addressed. Regardless of the specific implementation of an SPS, there are several traits in

common that each will posess.

2.7.1 Traits. Protective schemes have at least four traits in common [4] that are

pertinent to this research. First, all SPS implemetations are dynamic security control

systems and are designed to control power system stability in cases where the

uncontrolled response is likely to be more damaging than the controlled response.

Secondly, all are devised by off-line analysis, as opposed to on-line real-time control.

The reasons for this is that the power system response is too fast to allow for the usual

sequential control system logic, which might be summarized as:

• make the observations in real time

• determine the scope of the disturbance

• decide what action is required, and then

• take the needed action

Third, many of these schemes are armed or disarmed, as required, in order to meet

the needs of the system at a particular time. In other words, the special control logic may

not be required under certain operating conditions, in which case the SPS is disarmed.

Finally, all of the schemes provide a particular type of remedial action that is

designed to alleviate a certain observed system condition, or to take a predetermined

action when a certain event occurs whose resulting effects are calculated to be too serious

to ignore

Although the schemes have several traits in common, specific preplanned courses of

action must be determined and tailored through detailed stability studies. Therefore, it is

important to fully understand stability as it pertains to the power system.

2.7.2 Power System Stability. Power system stability may be broadly defined as

that property of a power system that enables it to remain in a state of operating
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equilibrium under normal operating conditions and to regain an acceptable state of

equilibrium after being subjected to a disturbance. Instability within of a power system

can be influenced by a wide range of factors and can take many different forms. Similarly,

there are numerous events that can introduce instability into a power system. Typical event

disturbances are identified below:

• Transmission faults

• Cascading outages of lines

• Generation outages

• Sudden, large load changes

• Combination of the above

There is much caution in the realm of power system stability, with numerous

reminders that solutions to stability problems of one category should not be at the expense

of another [39]. The basic operating requirements of an ac power system are that the

synchronous generators must remain in synchronism and the voltages must be kept close

to their rated values [51]. The capability of a power system to meet these requirements in

the face of possible disturbances (line faults, generator and line outages, load switchings,

et cetera (etc.)) is characterized by its transient, dynamic and voltage stability [55].

The simulations in this experiment have a great impact on the transient stability of

the power grid and is what will be measured throughout each experiment. Transient

stability is the ability of the power system to maintain synchronism when subjected to a

severe transient disturbance [39]. Power system stability depends greatly on both the

initial operating state and the severity of the disturbance. Although disturbances can vary

greatly, as previously identified in Section 2.7.2, the SPS is designed and operated so as to

be stable for a wide range of contingencies. Among the most common SPS types is load

shedding and generator rejection as depicted in Table 2.4.
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2.7.3 Generation Rejection Scheme. A Generator Rejection Scheme (GRS), when

properly operating, significantly improves response following a contingency [69]. A GRS

is designed to trip pre-selected generating unit(s) at a plant in order to prevent loss of the

entire plant. Utilizing generation rejection to attempt to regain system stability is not a

new approach. Quite to the contrary, generator rejection actually comprises the most

common type of special protection scheme, as identified in Table 2.4. The selective

tripping of generating units for severe transmission system contingencies has been used as

a method of improving system stability for many years [39]. The approach of generator

tripping as a stability aid was initially confined to hydro plants, but has gradually extended

to fossil-fuel-fired and nuclear units since the 1970s. Even with generation rejection

implemented, the creation of a load imbalance in a power system may cause such an

excess of load over generation that there is no alternative but to shed some of the load.

2.7.4 Underfrequency Load Shedding. In many cases, underfrequency conditions

arise due to the breakup of a large system into two or more islands. It is often necessary to

install load shedding relays throughout the power system so that any possible island

configuration will be protected against underfrequency operation.

An important aspect of load shedding is that it is necessary for all of the utilities that

make up the interconnected system to come to an agreement as to the amount and timing

of load shedding, so that all portions of the system behave in approximately the same

manner when load shedding is required, irrespective of the exact cut set that defines the

separation [3].

A desirable and obvious, yet not trivial, underlying requirement of load shedding is

the fact that a load should shed when called upon to do so. It is desirable is improve the

operation of load shedding by selecting only those loads that the system could trust to do

what is instructed of them in a time of need. Researchers are currently approaching this

facet of load shedding through the use of trust management [21][32][54].
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2.7.5 Trust Management. Although the idea of trust relates to firm beliefs in

attributes such as reliability, honesty and competence, it has proven a difficult topic to

research. This is primarily due to a lack of consensus in literature on the definition of trust

and exactly what constitutes trust management [2] [27] [46].

The definition of trust for the purposes of this research is [5]:

Trust is firm belief in the competence of an entity to act as expected, such that

this firm belief is not a fixed value associated with the entity, but rather it is

subject to the entitys behavior and applies only within a specific context at a

given time.

With regard to the power grid, the concept of trust management or a trust system is to

provide software agents that plug into an existing network, somewhat transparently, to

perform the functions of correlating data and identifying risk levels for corresponding

events and status updates to point to negative impacts on utility services. Researchers have

developed such trust systems that operate by intercepting messages or commands from

network nodes and validates input to identify security risks or bad data [15].

2.7.6 Reputation Based Trust. Most research on reputation based trust utilizes

information such as community-based feedbacks about past experiences of peers to help

make recommendations and judgements on quality and reliability of the applicable

transactions [68]. A challenge with any reputation based trust system is how to deal with

the malicious behaviors of peers, or malfunction that presents itself as such. For the

purpose of this research, a node displaying malicious or malfunctioning behavior is

identifies as bad.

Reputation based trust is a topic of much interest and research in recent years [2] [9]

[44], and each presents a manner to cope with such bad participants. The research in this

thesis, however, focuses specifically on the electric power system and addressing

challenges specific to it.
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Therefore, there are several researchers of keen interest, as they have effectively

demonstrated the application of reputation based trust within electrical power systems

[10] [20] [54]. Regardless of the specific SPS being utilized, taking correct action at the

correct time is key to success. This research determines the value of applying a concept to

an SPS that has not been yet been documented; namely modifying traditional

exponentially weighted moving average calculations. There is a push for modernization,

which is an ongoing process. While planning for the future, the effort must continue to

add security and reliability into the existing SCADA electric utility equipment. Adding a

reputation based trust system that can be optimized for each application not only adds

reliability now, but also provides a vehicle to add new enhancements directly into the

smart grid as it grows and evolves.

2.7.7 Special Protection System Trust Module. The specific trust implementation

in this research is an adaptation of existing research and has three major components; a

trust assignment component, a fault detection component and a decision component [21]:

1. The trust assignment component uses context sensitive information and

periodic intercommunication messages to determine individual smart

grid protection components’ trust values. The context sensitive

information shared by smart grid protection components are generator

frequencies, which is used to reach a consensus concerning the state of

the system. Protection components in agreement with the consensus are

assigned a high trust value and those whom disagree are assigned a low

trust value.

2. The fault detection component monitors one or more predetermined

values for changes that indicate a condition requiring corrective action,

namely grid frequencies measured at all generator and load locations.
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The decision component is notified when a monitored value exceeds or

falls below it predetermined limits.

3. The decision component uses the previously assigned trust values to

validate the detected fault and responds appropriately to minimize power

grid downtime.

To dynamically determine the appropriate corrective action, the referenced trust

module utilizes a greedy algorithm approach.

2.7.8 Greedy Sorting Algorithm. The greedy sorting algorithm is used by the trust

management module to determine the order in which the protection system nodes are

selected for load shedding, by using assigned trust values, node type and load values. In

this manner, the trust module sorts all protection system nodes. Table 2.5 is an example

set of sorted nodes with precedence from left to right, i.e., first sort by Type (type of node)

and then by Trust Value (nodes calculated trust value) followed by Load in Megawatts

(MW) (load amount at the node, customer authorized load shed amount (20% of load

amount in this example) and the node’s Identification Number (ID) [21].

Table 2.5: Sorted Nodes For Possible Load Shedding [21]

Type
Trust 
Value

Load 
(MW)

Shed Amt 
(MW) Node ID

Load High 1812 362 120
Load High 1492 298 73
Load High 1492 298 25
Load High 1250 250 72
Load Low 1590 318 33
Load Low 1492 298 82

If a frequency disturbance is detected and requires the power grid to shed 700 MW of

power, then the greedy algorithm would attempt to meet this requirement by selecting the

first load node in Table 2.5, namely node 120 [21]. Since the selection of this node is not
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enough to meet the 700 MW of power required to shed, the greedy algorithm selects the

next node, in this case node 73. This process must continue one more round to include

node 25, ensuring that the shed amount is great than or equal to 700 MW. Now the

selected node have enough load available for shedding (i.e., 958 MW) to meet the

requirement–enabling the greedy algorithm to stop selecting additional nodes for load

shedding [20].

It is important that if the greedy algorithm exhausts all load nodes from Table 2.5

with a trust value identified as High before it reaches the required load shed amount, it

then selects Low trust values until the required amount is met. Since the untrusted nodes

are not expected to follow the shed request, the system often fails to maintain the required

frequency threshold.

A second topic of interest is the specific determination of High and/or Low trust

values. Related research determines this binary value in a number of different manners

[10] [21] [54]. One option is to simply apply a trust threshold to the final observation. For

example, if the final frequency observed before the trust determination is made is within

tolerance, then the node would be trusted. If not within tolerance, then the corresponding

trust value for that time step would be Low, and would be the nodes overall trust value if

the trust determination is made during that time step. This aligns with the notion of a

traditional EWMA implementation with a lambda (λ) = 1, as discussed in Section 2.8.3.

Other trust management researchers have included a history and chose to equally

weight each of the trust value observations made for a specified period of time. This

concept equally weighs all past observations and corresponds to a traditional EWMA

implementation with a λ = 0, also discussed in Section 2.8.3.

2.8 Exponentially Weighted Moving Averages

Several approaches have been taken to determine the best application of trust [10]

[21] [54]. These approaches implement a variety of the SPS protection tools availably in

26



Table 2.4. It is the asserataion of this research that an EWMA is applicable to help

determine the trust value within a reputation based trust SPS implementation.

2.8.1 Overview. The EWMA concepts were first introduced in 1959 [53].

Although the EWMA is known to have optimal properties in some forecasting and control

applications [12] [48], it has largely been neglected as a tool by quality-control analysts

[43].

An exponentially weighted moving average is a means of smoothing random

fluctuations that has the following desirable properties [30]:

1. Declining weight is put on older data

2. It is extremely easy to compute

3. Minimum data is required

Observations are assumed to be sequentially recorded and these observations, or

some functions thereof, are usually plotted for the purpose of controlling a manufacturing

process. Additionally, the desire to employ historical data more resourcefully has

occasionally led to the notion of the moving average [33]. For example, a plot of a moving

average of k = 8 observations will only display the average of the eight most recent

observations. This is a first-in-first-out implementation, where newer data forces the older

data out of the computation.

2.8.2 Sample Calculations. Traditional EWMA implementations give less and

less weight to data as they get older and older. A new value is easily obtained by

computing a weighted average of two variables, namely the value of the average of the

previous period and the current value of the variable.

A simply application of an EWMA is presented in as Equation 2.1 [30], which

follows the rule: take a weighted average of all past observations and use this as your
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forecast of the present mean of the distribution.

S t = B[S t + AS t−1 + A2S t−2 + A3S t−3 + A4S t−4 + ...] (2.1)

where B is a constant between 0 and 1, A is (1 - B), the Ss are observations of the variable

and the t subscript indicates the time ordering of the observations. S t is the estimate of the

expected value of the distribution.

2.8.3 Traditional EWMA Example. This thesis research is based upon a variation

of the traditional application of EWMA [43], based on the statistic identified in Equation

2.2, which presents the symbol Zi.

Zi = λYi + (1 − λ)Zi−1, 0 < λ ≤ 1, i = 1, 2, ..., n (2.2)

where

• Z0 is the mean of the historical data

• Yi is the observation at time i

• N is the number of n observations to be monitored

The starting value Z0 is often realized as the target value of the monitored process

[56]. This approach is necessary there is no target value of the process being monitored.

Utilize Equation 2.3 to simply determine the average:

Z0 = Y =
1
N

N∑
i=1

Yi, i = 1, 2, ..., n (2.3)

Additionally, the sequentially recorded observations, Yi, are individually observed

values from the process.

TRADITIONAL EWMA EXAMPLE:

The given a data set, Y, has 8 observations, so N = 8:
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Y = {1, 1, 1, 1, 1, 1, 0, 0}.

Next calculate Z0, which in this case is equal to Y ,

Which is Z0 = Y = 1
8 {1, 1, 1, 1, 1, 1, 0, 0} = 0.75.

Implementing Equation 2.2 with λ = 0.6 yields the following initial Zi values:
Z0 = 0.75
Z1 = λY1 + (1 − λ)Z0 = 0.6 × 1 + (1 − 0.4) × 0.75 = 0.9000

Z2 = λY2 + (1 − λ)Z1 = 0.6 × 1 + (1 − 0.4) × 0.9000 = 0.9600

Following the same rules, all the Zn values are presented in Table 2.6.

Table 2.6: Intermediate Calculations of a Traditional EWMA Algorithm [43]

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

0.75 0.9000 0.9600 0.9840 0.9936 0.9974 0.9990 0.3996 0.1598

Figure 3.1 captures the resulting EWMA chart for data set Y. It is important to note

that although only the last two observations from Y were 0’s, the final EWMA is 0.1598,

which is due to the fact a traditional EWMA property is that declining weight is placed

older data, given 0 < λ ≤ 1.

To better understand the role λ has in the creation of Figure 3.1, where the final

calculated average is 0.1598, consider the cases where λ is equal to 0 and the case where it

is equal to 1. λ = 0 is essentially giving equal weight to all observations, which is equal to

the average, of 0.75 in this case. Conversely, λ = 1 only gives weight to the most recent

observation, yielding a calculated average of 0, as this is the final value in data set Y .

Therefore, given data set Y , the resultant value given a λ of 0, 0.6 and 1.0 yields

calculated averages of 0, 0.1598 and 0.75 respectively. If applied to a trust scheme, data

set Y may be trusted on some occasions and not trusted on others, depending on the value

of λ and also the trust threshold. Selecting appropriate λ and trust thresholds are key to

successful implementation of an EWMA scheme within a reputation based trust

management system.
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Figure 2.3: Traditional EWMA Graph on Data Set Y , with λ = 0.6

2.8.4 SPS Applicability. In the case of an SPS incorporating reputation based

trust, there is no target value for Z0. This is due to the fact that a particular node may be

either good or bad (malicious or malfunctioning). Therefore, although the minimum

acceptable frequency for normal operation may be 58.8 Hz, initializing Z0 to this value

could create a situation where bad nodes are not detected.

The overall goal of the SPS is like many industrial processes, where the goal is to

maintain a stable state or in this case frequency. This is not the case, however, for the

reputation based trust management implementation, where the goal is to accurately reflect

trustworthiness of each node regardless of whether it is behaving good or bad.

Lastly, due to the complexities associated with SPS implementation, the traditional

EWMA implementation cannot be directly applied. In this thesis, several changes are

made to the algorithm described by Equation 2.2 before it is applied to any trust
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management. Specific changes to the algorithm along with detailed testing methodology

is presented in Chapter 3.
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3 Methodology

3.1 Overview

Thorough and rigorous testing is important to validate assumptions and determine

causality. The goal of creating the simulation environment in this thesis is not to

necessarily optimize individual run-time environment components. Rather, the goal for

utilizing this particular experimental environment is to create an environment that is

conducive to robust reputation based trust testing. Finally, the role of statistics in the

scientific method cannot be overstated.

The discipline of ”statistics” can be described as the art and science of using

quantitative information (data) to gain understanding and to make informed decisions

[40]. Therefore, the methodology in this thesis was designed to facilitate the condensing

of large volumes of data into forms that facilitate understanding.

Special protection systems are evaluated in terms of its ability to take correct actions

during disruptions within electrical systems such as those identified in Table 2.3. The

overall goal of these protective systems is quite simply to preserve system stability.

This research methodology explores the applicability of a proposed special protection

system that calculates reputation based trust based upon a modified Exponentially

Weighted Moving Averages (EWMA) algorithm developed within this research. To

accomplish this, the research methodology is divided into stages that facilitate data

collection and analysis.

3.2 Modified Exponentially Weighted Moving Average

Due to the properties of a special protection scheme, namely that it is called after a

catastrophic failure is observed, direct application of the traditional exponentially

weighted moving average equation, Equation 2.2, is not possible. This research assumes
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that during normal operation, applicable system measurements and their resultant trust

values are consistent and accurate. Then when a special protection condition arises, the

stability of the system is jeopardized, as discussed in Section 2.7.2. Therefore, the

traditional EWMA property that declining weight is put on older data simply will not

suffice.

This research explores the application of reputation based trust that implements a

modified EWMA scheme. If implemented correctly, the protection system will correctly

react to the disturbance before the system reaches the minimum frequency threshold of

58.8 Hz, while minimizing both false positives and false negatives.

Due to the instability induced by the event requiring the special protection system

action, older data should have more weight than the newer data collected during periods

of instability. Therefore, critical modifications must be made to the traditional EWMA

algorithm to accurately account for the properties surrounding SPS implementation.

Equation 2.2 identified the traditional EWMA algorithm:

Zi = λYi + (1 − λ)Zi−1, 0 < λ ≤ 1, i = 1, 2, ..., n

Within this research, consensus information as identified in Section 2.7.8, is treated

as intermediary trust values. Therefore, instead of making trust decisions on data set Y

directly, as occurred in the traditional EWMA calculations in Section 2.8.2, data set Y is

now viewed as a set of a intermediary trust value. The modified algorithm is applied to

data set Y to determine the actual trust values.

When applied to data set Y = {1, 1, 1, 1, 1, 1, 0, 0} with a λ = 0.6, the resultant

calculation, or trust value in this case is 0.1598 as identified in Table 2.6. This research

attests that the final two 0′s in data set Y are not indicative of an untrustworthy condition,

but rather should be expected during an SPS condition.

To correct for this SPS property, it is important to traverse the data set backward, or

from most recent to oldest and give the most weight to older data. To accomplish this
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result, Equations 2.3 and 2.2 must be modified to become Equations 3.1 and 3.2

respectively:

ẐN+1 = Y =
1
N

N∑
j=1

Y j, (3.1)

Ẑ j = λY j + (1 − λ)Ẑ j+1, 0 < λ ≤ 1, j = n, n − 1, ..., 1 (3.2)

where

• ẐN+1 is the mean of the historical data

• Y j is the observation at time j

• N is the number of n observations to be monitored

• Ẑ j is the modified EWMA algorithm

These new equations allow for revised trust calculations from those realized in

Section 2.8.3.

MODIFIED EWMA EXAMPLE:

Once again, the given a data set, Y, has 8 observations, so N = 8:

Y = {1, 1, 1, 1, 1, 1, 0, 0}.

Next calculate ẐN+1, which is equal to Y = Ẑ9, since N = 8.

Which is ẐN+1 = Ẑ9 = Y = 1
8 {1, 1, 1, 1, 1, 1, 0, 0} = 0.75.

Implementing Equation 3.2 with λ = 0.6 yields the following initial Ẑ j values:
Ẑ9 = 0.75
Ẑ8 = λY8 + (1 − λ)Ẑ9 = 0.6 × 0 + (1 − 0.4) × 0.75 = 0.3000
Ẑ7 = λY7 + (1 − λ)Ẑ8 = 0.6 × 0 + (1 − 0.4) × 0.3000 = 0.1200

Ẑ6 = λY6 + (1 − λ)Ẑ7 = 0.6 × 1 + (1 − 0.4) × 0.1200 = 0.6480

Following the same rules, all the Ẑ j values are presented in Table 3.1.
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Figure 3.1: Modified EWMA Graph on Data Set Y , with λ = 0.6

Table 3.1: Intermediate Calculations of Modified EWMA Algorithm

Ẑ1 Ẑ2 Ẑ3 Ẑ4 Ẑ5 Ẑ6 Ẑ7 Ẑ8 Ẑ9

0.9964 0.9910 0.9775 0.9437 0.8592 0.6480 0.1200 0.3000 0.7500

Figure 3.1 captures the resulting EWMA chart for data set Y . It is important to note

that this revised algorithm generates a markedly different result than the traditional

implementation in Section 2.8.3, resulting in a final EWMA (trust calculation) of 0.9964.

Since declining is placed on more recent data, the final two values of data set Y , which are

both 0′s, the resulting calculation is quite high. This final value would be considered

trusted given any threshold trust below 0.9964. Critical to this research is implementation
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of this modified exponentially weight moving averages algorithm to determine optimal λ

and trust threshold values, as determined using techniques in Section 3.2.1.

3.2.1 Analysis. Receiver operating characteristics graphs have long been used in

signal detection theory to depict the tradeoff between hit rates and false alarm rates of

classifiers, and have since applied to machine learning in the evaluation and comparison of

algorithms [19] [62].

TRUE FALSE

TRUE
True 

Postiive 
(TP)

False 
Positive 

(FP)

FALSE
False 

Negative 
(FN)

True 
Negative 

(TN)

Observed

Predicted

Figure 3.2: Confusion Martix [22]

Labeled in Figure 3.2 are the four possible outcomes of a given classifier and

instance. If the instance is positive and classified as positive, it is counted as a True

Positive (TP); if it is classified as negative, it is counted as a False Negative (FN).

Similarly, if the instance is negative and it is classified as negative, it is counted as a True

Negative (TN); if it is classified as positive, it is counted as a False Positive (FP). Given a

classifier and a set of instances, (the test set), a two-by-two confusion matrix can be

constructed representing the dispositions of the set of instances [22].
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Two additional performance metrics must be identified to construct ROC curves,

namely the True Positive Rate (TPR) and False Positive Rate (FPR) as identified in

Equations 3.3 and 3.4 [29].

TruePositiveRate (T PR) =
T P

T P + FN
(3.3)

FalsePositiveRate (FPR) =
FP

FP + T N
(3.4)

ROC curves are comprised of single points comprised of (FP rate, TP rate) pairs,

known as discrete classifiers [22], as depicted in Figure 3.3.

the actual class and the predicted class we use the labels
{Y,N} for the class predictions produced by a model.

Given a classifier and an instance, there are four possible
outcomes. If the instance is positive and it is classified as
positive, it is counted as a true positive; if it is classified
as negative, it is counted as a false negative. If the instance
is negative and it is classified as negative, it is counted as a
true negative; if it is classified as positive, it is counted as a
false positive. Given a classifier and a set of instances (the
test set), a two-by-two confusion matrix (also called a con-
tingency table) can be constructed representing the disposi-
tions of the set of instances. This matrix forms the basis for
many common metrics.

Fig. 1 shows a confusion matrix and equations of several
common metrics that can be calculated from it. The num-
bers along the major diagonal represent the correct deci-
sions made, and the numbers of this diagonal represent
the errors—the confusion—between the various classes.
The true positive rate1 (also called hit rate and recall) of a
classifier is estimated as

tp rate � Positives correctly classified

Total positives

The false positive rate (also called false alarm rate) of the
classifier is

fp rate � Negatives incorrectly classified

Total negatives

Additional terms associated with ROC curves are

sensitivity ¼ recall

specificity ¼ True negatives

False positives þ True negatives

¼ 1� fp rate

positive predictive value ¼ precision

3. ROC space

ROC graphs are two-dimensional graphs in which tp

rate is plotted on the Y axis and fp rate is plotted on the
X axis. An ROC graph depicts relative tradeoffs between
benefits (true positives) and costs (false positives). Fig. 2
shows an ROC graph with five classifiers labeled A through
E.

A discrete classifier is one that outputs only a class label.
Each discrete classifier produces an (fp rate, tp rate) pair
corresponding to a single point in ROC space. The classifi-
ers in Fig. 2 are all discrete classifiers.

Several points in ROC space are important to note. The
lower left point (0,0) represents the strategy of never issu-
ing a positive classification; such a classifier commits no
false positive errors but also gains no true positives. The
opposite strategy, of unconditionally issuing positive classi-
fications, is represented by the upper right point (1, 1).

The point (0,1) represents perfect classification. D�s per-
formance is perfect as shown.

Informally, one point in ROC space is better than
another if it is to the northwest (tp rate is higher, fp rate

is lower, or both) of the first. Classifiers appearing on the
left-hand side of an ROC graph, near the X axis, may be

Hypothesized
class

Y

N

p n

P NColumn totals:

True class

False
Positives

True
Positives

True
Negatives

False
Negatives

Fig. 1. Confusion matrix and common performance metrics calculated from it.

1 For clarity, counts such as TP and FP will be denoted with upper-case
letters and rates such as tp rate will be denoted with lower-case.
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Fig. 2. A basic ROC graph showing five discrete classifiers.

862 T. Fawcett / Pattern Recognition Letters 27 (2006) 861–874

Figure 3.3: Basic ROC Graph Showing Five Discrete Classifiers [22]

The lower left point (0,0) represents a strategy that commits no false positives, but

also no true positives. The opposite strategy would be depicted by a point in the the upper

right (1,1). Unfortunately, this strategy unconditionally issues both true and false positives.

Informally, one point in ROC space is better than another if it is to the nort;hwest (TP rate

is higher, FP rate is lower, or both) of the first [22]. Finally, the diagonal line y = x
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represents a strategy of randomly guessing a class. With regard to the points plotted in

Figure 3.3, D would be the optimal strategy of the discrete classifiers available, as it serves

to both maximize true positives and minimize false positives. Research in this thesis will

consider a classifier optimal if it accomplishes both of these objectives as well.

3.3 Testing Environment

The research contained in this thesis makes use primarily of the EPOCHS Simulation

Environment, PSS/E electromechanical transient simulator and NS2 network simulator.

3.3.1 EPOCHS Simulation Environment. EPOCHS is a simulation platform that

integrates multiple research and Commercial Off-The-Shelf (COTS) systems to bridge the

gap [32]. It allows users to investigate electromechanical scenarios using PSS/E and NS2.

The focus of EPOCHS is to integrate power and network communication simulators so

that their internal simulation time clocks advance seamlessly.

PSCAD/EMTD

PSS/E

NS2

AgentHQ 

Unified 

View

Agent

Agent

Agent

RTI

Custom Module

Federated Communication

Combined System

Simulators

Legend

Figure 3.4: Relationship Between EPOCHS Components

38



3.3.2 Network Simulator 2. Network Simulator (Version 2), widely known as

NS2, is an event-driven simulation tool that is useful in studying the dynamic nature of

communication networks and has gained popularity in the networking research

community since its birth in 1989 [35]. As identified in 3.5, NS2 takes in the name of a

Tcl simulation scripting file as its argument.

Simulation 
Objects

Simulation 
Objects

Tcl 
Simulation 

Script

Simulation 
Trace 
File

NS2 Shell Executable Command (ns)

C++ OTcl

NAM 
(Animation)

Xgraph 
(Plotting)

Figure 3.5: NS2 Architecture [35]

Figure 3.6 provides a representation of smart grid implementation that NS2 attempts

to accurately model. Specifically, there are several different types of nodes that are

interconnected such as customers, substations power plants and control centers. Within

NS2 each of these node types is represented by a software agent, where software agents

are autonomous software entities designed to mimic the behavior of real world systems,

and each would be strategically located within Intelligent Electronic Devices (IEDs) in a

real world environment [21].

Within NS2, the software agents communicate with each other, share data and make

observations of peers.
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corresponding power simulator component via EPOCHS [68], see Figure 27. Each 

software agent represents a single power simulator component, such as a load bus in 

PSS/E [65] or a power bus in PSCAD [66]. Each software agent can access and modify 

their corresponding power component’s data (e.g., access sensor data, engage relays, 

change load power levels, etc). The software agents’ capabilities enable seamless 

integration of the trust management toolkit modules with a simulated smart grid enhanced 

power grid. 

 
Figure 26. Abstract representation of a smart grid wide area network [68] 

 
Figure 27. The EPOCHS simulation system [68] 
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Figure 3.6: Representation of a Smart Grid Wide Area Network [32]

3.3.3 PSS/E. PSS/E is the premier software tool used by electrical transmission

participants world-wide. Since its inception in 1976, it has become the most

comprehensive, technically advanced, and widely used commercial program of its type

[60]. Software agents communicate with PSS/E through the EPOCHS environment, as

depicted in Figure 3.4. As such, each software agent can access and modify their

corresponding power component’s data (e.g., access sensor data, engage relays, change

load power levels, etc.), ensuring seamless integration of proposed the trust management

enabled exponentially weighted moving averages algorithm capability into a simulated

smart grid enhanced power grid.

3.3.4 AgentHQ. AgentHQ presents a unified environment to agents and acts as a

proxy when agents interact with other EPOCHS components.

In order to support the operation of software agents on the power grid, a

hardware device is needed that has the computational, communication and I/O

capabilities to meet the agent demands. EPOCHS uses agent-based intelligent

electronic devices for this purpose so software agents can perform the

necessary protection and control functions needed [31].

Through AgentHQ, agents can get and set messages to each other.
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3.3.5 RTI. The ”glue” holding the high level architecture combinations together is

a control component known as a Runtime Infrastructure (RTI). The RTI routes all

messages between simulation components and ensures that the simulation time is

synchronized across all components [32]. EPOSCHs implements a time-stepped model, in

which each of the component federates executes until a preset simulation time is reached.

In this simulation model, the amount of time between synchronization points has a fixed

length.

3.3.6 Component Interaction. Synchronization of simulators within EPOCHS

follows a simple algorithm. As soon as NS2 and PSS/E begin execution, the RTI halts the

simulators and waits for synchronization messages from both the power simulator and

NS2. The RTI then yields control to AgentHQ, who in turn passes control on to the agents

one by one until all have executed.

During the simulations, this is where agents are sending communication messages

and getting/setting power system variables, which is the basis of how the underlying trust

calculations are made. Once all agents have executed, AgentHQ returns control back to

the RTI, who in turn notifies both NS2 and PSS/E that the current time step is done. The

two simulation engines run for at least one additional time step, ensuring that no more

actions are required.

3.4 System Studied

Experimental simulations make use of a modified version of IEEE’s 145-bus

50-generator test case [64]. The system has been modified by adding a 500 kV line from

bus 1 to bus 25. The rational of this additional line is to create a situation that requires the

use of a special protection system in order to maintain stability.

In general, power systems can sustain the loss of a single tie line. However, most

power systems require remedial action with the loss of a second line, if the line is not
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cleared quickly enough. An additional modification to the IEEE test case is that total

system capacity has been reduced. The lower system capacity makes the power flow along

the main corridor much more important than it is in the original system.

In the IEEE test case, the main SPS agent is located at bus 1, and it identifies extreme

contingencies such as the loss of two lines. It then performs both generation rejection with

preset units and load shedding based upon real-time measurements [64]. The specific

generator to be rejected was determined through simulation studies [32].

Utilizing this modified IEEE 145-bus 50-generator test case, each simulation

implements the same basic template:

1. Power transmission lines are tripped due to malfunction and overloading

The result is a power transmission system imbalance

2. Preplanned action requires removal of a specific generator (93) from the system

The result is an imbalanced and unstable system frequency drop

3. The special protection system relies on calculated trust values of each load node to
intelligently shed load

The goal is regaining system stability by shedding the required amount of load

The specific scenario for this research has been created to allow for robust trust

measurement experimentation.

3.4.1 Special Protection Scheme Action Goal. A key indicator of success

throughout this research is the ability of the system to hold the system’s frequency above

58.8 Hz as illustrated in Figure 2.2. The special protection scheme implemented in this

research is based upon the original EPOCHs research, which employs an algorithm to

determine the precise generation shortfall when a disturbance occurs [32]. Specific

remedial SPS actions are dependant upon the system in which they are applied.
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3.5 Test Scenario

The overall goal of an SPS is to prevent instability and preserve the system’s integrity

within a safe operating range or quickly recover from a critical condition. Critical

disturbances are those expected to have a devastating effect on the power system under a

particular operating condition [3].

The modified trust management SPS test scenarios monitor the power grid’s

frequency for disturbances that are indicative of an imminent fault and attempts to prevent

the fault by generation rejection (Section 2.7.3 and load shedding Section 2.7.4) [21]. In

this test case, two inter-tie power lines are lost causing a protection system condition,

causing the power grid to become transiently unstable, necessitating power generation

rejection.

During simulation on the system described in Section 3.4, dropping generator 93

constitutes a form of dynamic security assurance, where the actions to be taken in

response to a given condition are preplanned [3]. Since generating units can be rapidly

tripped, this is a very effective and efficient means of improving transient stability. For this

scenario, it has been determined through stability studies, that a serious enough condition

exists to call for preplanned control action.

The main SPS agent communicates with generation and load agents to gather data

values and also communicates with agents located at major system or load buses to collect

voltage and frequency measurements as well as load available for shedding [32]. Upon

detection of the impending instability, it is necessary to shed selected loads so that

transient stability is maintained without resorting to system separation, isolation of the

affected region. The SPS employs an algorithm to determine the appropriate amount of

load to shed in order to hold the system’s frequency above 58.8Hz. The load agents are

mainly located at distribution substations and shed load when ordered to do so by the main

SPS agent. Specifically, within each simulation [32]:
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A fault occurs on the line from bus 1 to bus 25 at time 0. The fault is cleared

at 0.07s and a trip command is sent to generator 93 at 0.10s. Since the fault is

cleared after the critical fault-clearing time, the system becomes transiently

unstable and one group of 17 generators loses synchronism with another

group of 33 generators. The main SPS agent at bus 1 recognizes the situation

and begins to communicate with other system agents to gather various data

values and also sends a generation rejection order to agent at bus 93.

Generation rejection keeps the system stable, but without any corrective

action, the frequency drops below the 58.8Hz threshold.

The main agent detects the ”disturbance” created by generation rejection. It

then estimates the disturbance size 1862MW, calculates that there is

2090MW generation remaining and predicts that the steady-state frequency

after the disturbance will be 57.45Hz.

Therefore, although the rejection of generator 93 counteracts the power grid’s

transient instability, it causes an unacceptable decrease in frequency, where the supplied

generator power is less than the load power demanded. Such a frequency drop could

induce a blackout in the power grid similar to the 1965 northeast blackout [61]. Since the

predicted steady-state system frequency of 57.45Hz is below the preset minimum

frequency of 58.8Hz, load shedding is required.

This mandatory load shedding is levied on selected load nodes. If the selected load

shedding nodes are untrusted and refuse to load shed their fair amount, then the special

protection system will fail to maintain the power grid’s frequency above 58.8 Hz [32].If

the selected load shedding nodes are untrusted and refuse to load shed their fair amount,

then the special protection system will fail to maintain the power grid’s frequency above

58.8 Hz [32]. This underlines the importance of the trust management system’s decision
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module selection on trusted nodes for load shedding, recalling that trusted nodes have a

higher probability of successfully completing assigned tasks than untrusted nodes [20].

The trust management’s decision module selects nodes for load shedding based upon

assigned trust values and the amount of load that must be shed. In this research, frequency

information provided by all the nodes is used to determine individual trust values. The

trust management decision module uses this information, and calculates modified

exponentially weighted moving averages algorithm, to select nodes for load shedding and

determine how much each selected node must shed [21].

The trust management decision module then sends each selected node a load shed

message with the load shed amount required by the node, and the trusted nodes load shed

their assigned amount, maintaingin the power grid frequency above 58.8 Hz [20].

3.6 Experimental Design or Test Cases

Computer simulations are used to demonstrate the utility of modified trust

management modules in special protection systems within a power grid. The protection

systems are augmented as follows [21]:

1. The traditional special protection system is augmented with a trust management
module

2. The assignment module utilizes current grid frequency information in a modified
EWMA reputation based manor to establish and assign trust values

3. The fault detection module uses the traditional frequency disturbance mechanism to
detect system conditions indicative of an imminent under-frequency fault

4. The decision module uses a greedy algorithm approach to determine which buses to
select for load shedding

This normality testing is also conducted in related research approaches [10] [21] [54],

and in this research constitutes Stage 1.

3.6.1 Stage 1 (Normality Testing). NS2 has 64 predefined good random seed

values in their random number generator for computer simulation experiments, which are
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equally spaced around a 231 cycle of random numbers [35]. 36 seeds are chosen at random

from NS2’s predefined good random seed values. For Stages 1 and 3, these same 36 seeds

(a set) are utilized so that data can be compared, attempting to minimize any introduced

bias or unwanted variability.

The seeds in each set are used generate a listing of bad nodes that will not be known

to the system during simulation. It is the job of the trust mechanism to effectively

determine which nodes are good and bad. Normality testing is performed for each of the

5, 10 and 15 bad node test cases. Each of these are validated to ensure that the data

generated are normal, allowing additional statistical analysis and inference.

Validation of Normality includes visual inspections of a Histogram and

Quantile-Quantile (Q-Q) plots, along with further confirmation by the Shapiro-Wilk test

[57]. Results that indicate the simulation generates Normal results means that research can

continue to Stage 2.

3.6.2 Stage 2 (Modified EWMA). Determination of the optimal strategy is Stage 2

of this research and is based on the Receiver Operating Characteristic (ROC) principles

identified in Section 3.2.1. Validation of the optimal strategy is based upon numerical

validation of the True Positive Rate vs. False Positive Rate of the selected strategy as well

as through graphical representation of all strategies on a ROC curve.

Stage 3 incorporates the optimal strategy into the trust module, identified in Section

2.7.7, and determines viability of this new approach.

3.6.3 Stage 3 (5, 10 and 15 Bad Node Frequencies). The goal of Stage 3

experiments is to determine the ability of the modified exponentially weighted moving

averages algorithm, as compared to the special protection system without any trust

management implemented, and related research that examines only the final trust value as

a basis for trustworthiness (equal to λ = 1). The modified EWMA is tested using the
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optimal λ and Trust Threshold values as determined in Section 4.3. The experiments are

completed utilizing modified EWMA Equations, 3.1 and 3.2.

Measurements will focus on the frequency that each simulation is able to maintain,

with the goal being the minimum acceptable value of 58.8 Hz. An Analysis of Variance

(ANOVA) and comparison of Confidence Intervals (CI) are used to determine the

statistical significance of the simulation results.

3.7 Analysis

Analysis techniques in this research range from Receiver Operating Characteristics

(ROC) curves to determine appropriate λ and Trust Threshold values, Analysis of

Variance (ANOVA) analysis, Quantile-Quantile (Q-Q) plot comparisons and a comparison

of resulting confidence intervals.

3.8 Methodology Summary

A clear research methodology is essential to evaluate the hypothesis contained

herein. In this research, the power transmission system and distributed special protection

system are the component under test. Simulation is selected as the appropriate evaluation

technique and the experimental design is identified to achieve a 99% confidence interval.

Finally, this research methodology serves to identify a method to collect valid data

required to evaluate and analyze the performance of the proposed modified exponentially

weighted moving averages enabled trust system.
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4 Analysis and Results

4.1 Overview

This section describes the results obtained from applying the design described in

Chapter 3, and associated analysis. This analysis is both observational (e.g., identifying

trends, showing success or failure, observing details of what the results show) and

interpretive analysis (e.g., describing why results are the way they are, what underlying

principles contributed to the success or failure).

4.2 Stage 1 (Normality Testing)

Stage 1 simulations were conducted in accordance with the methodology outlined in

Section 3.6.1:

36 seeds are chosen at random from NS2’s predefined good random seed

values. For Stages 1 and 3, these same 36 seeds (a set) are utilized so that data

can be compared, attempting to minimize any introduced bias or unwanted

variability.

The seeds in each set are used generate a listing of bad nodes that will not be

known to the system during simulation. It is the job of the trust mechanism to

effectively determine which nodes are good and bad. Normality testing is

performed for each of the 5, 10 and 15 bad node test cases. Each of these are

validated to ensure that the data generated are normal, allowing additional

statistical analysis and inference.

Represented here are the results from the 5 bad node test cases. If a determination of

Normality can be confirmed, then one can infer that the random bad nodes are indeed

chosen at random and that the data produced from simulation is representative of

real-world results. To that end, outputs from this stage include the visual Normality
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validation tools of a Histogram (see Figure 4.1) and Quantile-Quantile (Q-Q) plot (see

Figure 4.2).
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Figure 4.1: Histogram Generated from Simulation Results for Traditional SPS with 5 Bad
Nodes)

The Histogram displays characteristics of Normality; namely, a resemblance to the

desired bell curve. Additionally, the linearity of the points identified on the Q-Q plot

suggest that the data are Normally distributed as well.

These positive results help support the notion of Normality and are cause to conduct

one final test, the Shapiro-Wilk Normality test [57]. The Shapiro-Wilk test resulted in a

p-value of 0.3449 and a W value of 0.9668. These results do not suggest rejection of the

null hypothesis [21]
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Figure 4.2: Quantile-Quantile Plot Generated from Simulation Data for Traditional SPS
with 5 Bad Nodes

The selected 95% confidence interval corresponds to a statistical α value of

5%. Hence, a p-value less than α would cause us to reject the null hypothesis.

The W value is the ratio of the square of an approximate linear combination of

sample ordered statistics by the symmetric estimate of variance. A large value

close to 1 supports the null hypothesis.

As found in related research, both the p-value and w-value are sufficiently large, which

indicates that the sample data was drawn from a Normally distributed population [21]

[54]. The sample size of 36 observations, along with the results of the Histogram, Q-Q

plot and Shapiro-Wilk test, further lend empirical in support of the null hypothesis that the

sample came from Normally distributed data.

Since statistical results help confirm that the simulation environment generates

Normal results, research can continue to Stage 2 to determine the optimal λ and Trust
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Threshold values for the proposed modified exponentially weighted moving averages

algorithm.

4.3 Stage 2 (Modified EWMA)

Stage 2 experiments were conducted in accordance with Methodology Section 3.6.2,

in which the goal was to generate operating characteristic cure in which an optimal λ and

Trust Threshold could be determined. The experiments were to completed utilizing

modified EWMA Equations, 3.1 and 3.2, and success will be measured using properties of

the receiver operating characteristic curve in Section 3.2.1. Figure 4.3 represents the result

of this experiment.
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Figure 4.3: Receiver Operating Characteristic Curve Data with Optimal Strategy Identified;
Point (0.00, 1.00) with λ = 0.1 and Trust Threshold = 0.5
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A closer look at the data behind this point reveals the λ and Trust Threshold that

produced point (0.00, 1.00) are 0.10 and 0.5 respectively, as observed in Figure 4.4. This

point produces a special point on a receiver operating characteristic curve. The point

(0.00, 1.00) in the top left corner denotes perfect classification: 100% true positive rate

and 0% false positive rate [29]. Remaining simulations are conducted utilizing this

optimal strategy.

A complete table of results is located in Appendix A, where all combinations of λ

values ranging from 0.0 to 1.0 are calculated against Trust Thresholds ranging from 0.0 to

0.9, each in 0.1 increments.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
True Positives (TP) 576 576 576 576 561 440 207 119 34
False Positives (FP) 502 392 271 116 71 0 0 0 0
True Negatives (TN) 38 148 269 424 469 540 540 540 540
False Negatives (FN) 0 0 0 0 15 136 369 457 542

1.00 1.00 1.00 1.00 0.97 0.76 0.36 0.21 0.06
0.93 0.73 0.50 0.21 0.13 0.00 0.00 0.00 0.00

True Positives (TP) 576 576 576 576 576 464 326 124 64
False Positives (FP) 484 373 208 83 0 0 0 0 0
True Negatives (TN) 56 167 332 457 540 540 540 540 540
False Negatives (FN) 0 0 0 0 0 112 250 452 512

1.00 1.00 1.00 1.00 1.00 0.81 0.57 0.22 0.11
0.90 0.69 0.39 0.15 0.00 0.00 0.00 0.00 0.00

True Positives (TP) 576 576 576 540 499 462 332 148 106
False Positives (FP) 412 373 224 117 67 36 0 0 0
True Negatives (TN) 128 167 316 423 473 504 540 540 540
False Negatives (FN) 0 0 0 36 77 114 244 428 470

1.00 1.00 1.00 0.94 0.87 0.80 0.58 0.26 0.18
0.76 0.69 0.41 0.22 0.12 0.07 0.00 0.00 0.00

True Positives (TP) 576 576 540 540 540 427 332 177 124
False Positives (FP) 412 357 224 139 36 36 36 0 0
True Negatives (TN) 128 183 316 401 504 504 504 540 540
False Negatives (FN) 0 0 36 36 36 149 244 399 452

1.00 1.00 0.94 0.94 0.94 0.74 0.58 0.31 0.22
0.76 0.66 0.41 0.26 0.07 0.07 0.07 0.00 0.00

True Positives (TP) 576 540 540 540 520 427 351 260 147
False Positives (FP) 378 296 207 139 52 36 36 36 0
True Negatives (TN) 162 244 333 401 488 504 504 504 540
False Negatives (FN) 0 36 36 36 56 149 225 316 429

1.00 0.94 0.94 0.94 0.90 0.74 0.61 0.45 0.26
0.70 0.55 0.38 0.26 0.10 0.07 0.07 0.07 0.00

True Positives (TP) 559 540 540 520 460 460 377 298 182
False Positives (FP) 362 262 197 100 100 52 36 36 19
True Negatives (TN) 178 278 343 440 440 488 504 504 521
False Negatives (FN) 17 36 36 56 116 116 199 278 394

0.97 0.94 0.94 0.90 0.80 0.80 0.65 0.52 0.32
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Figure 4.4: Receiver Operating Characteristic Data With Optimal Strategy for λ and Trust
Threshold Value Identified

In summary, although perfect classification is realized in this research, the ability of

the system to maintain the minimum acceptable frequency of 58.8 Hz throughout each of

the 5, 10 and 15 bad node test cases must still be validated in the next Stage.
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4.4 Stage 3 (5, 10 and 15 Bad Node Frequencies)

Stage 3 experiments were conducted in accordance with Methodology Section 3.6.3,

in which the goal was to determine the ability of the modified exponentially weighted

moving averages algorithm, as compared to the special protection system without any

trust management implemented. The modified EWMA is tested using the optimal λ and

Trust Threshold values as determined in Section 4.3:

The goal of Stage 3 experiments is to determine the ability of the modified

exponentially weighted moving averages algorithm, as compared to the

special protection system without any trust management implemented, and

related research that examines only the final trust value as a basis for

trustworthiness (equal to λ = 1).

The experiments were to completed utilizing modified EWMA Equations, 3.1 and

3.2, and the resulting optimal strategy that was identified in Figure 4.3. Figures 4.5

contains the results of the 15 bad node test case implemented with the optimal strategy.

At the 95% confidence interval, the modified EWMA trust module is able to maintain

the frequency above the minimum acceptable frequency of 58.8 Hz during each individual

simulation with the optimal strategy implemented. Conversely, the other two teat cases the

15 bad node test case are not able to make the same claim. Figure 4.6 represents

traditional reputation based trust approaches, which examine only the most recent trust

observation to determine trustworthiness. This equates to a λ value of 1, as labeled in the

graph. Upon further examination, figure 4.6 reveals that this approach to trust does

achieve the required minimum acceptable frequency of 58.8 Hz some of the time with

95% confidence. However, the same confidence interval also reveals that a majority of the

time, this approach also fails to meet the frequency requirement.
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Figure 4.5: Frequency Observations for Optimally Modified EWMA with 15 Bad Nodes at
95% Confidence Interval
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Finally, Figure 4.7 identifies the frequency observations associated with an

implementation that does not utilize trust. As identified in the graph, with 95%

confidence, each of the test cases can be expected to fail when there 15 bad nodes and no

trust module is implemented.
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Figure 4.7: Frequency Observations for No Trust with 15 Bad Nodes at 95% Confidence
Interval

Similar tests were conducted for both the 5 and 10 bad node test cases. The final

frequency at the 95% confidence interval of each of these test cases are averaged and

presented in Figure 4.8. As expected, each of the test cases with the modified EWMA

trust module implemented maintains the frequency well above the minimum acceptable

frequency. Conversely, with no trust module implemented, only the 5 bad node test case is

able to meet the 58.8 Hz threshold.

Additionally, the Two-Factor Without Replication ANOVA Test analysis confirms the

visual observations of this stage. Specifically, the test indicates a statistically significant

difference in between trust module usage for λ = 1 and λ = 0.1 and/or non-trust usage for
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Figure 4.8: Comparison of Final Frequency Values for 5, 10 and 15 Bad Nodes at 95%
Confidence Interval

each of the 5, 10 and 15 bad node test cases, as f-values > f-critical values and p-values <

0.05 in each case. The cases that visually appear to have possible confidence interval

overlap within Figure 4.8 are found within the 5 bad node cases that implement trust

modules (λ = 1 and λ = 0.1 respectively). The ANOVA results for this analysis are f-value

= 5.925, f-critical value = 4.121 and p-value = 0.020. At the 95% confidence interval,

these ANOVA results are indicative of statistical difference.

One final ANOVA analysis of interest examined whether the optimal trust module

strategies were statistically different between the 5, 10 and 15 bad node test cases, as the

graph in Figure 4.8 would lead one to believe there is no difference. ANOVA analysis

confirms this visual observation. The ANOVA results for this analysis are f-value = 0.781,

f-critical value = 3.128 and p-value = 0.462. At the 95% confidence interval, these

ANOVA results indicate a lack of statistical difference.
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4.5 Analysis and Results Summary

In summary, the results of this research indicate that a modified exponentially

weighted moving averages algorithm can successfully be applied to the trust module of a

special protection system. In fact, between the 5, 10 and 15 bad node test cases, there was

no statistical difference between the optimal trust strategy results. This was expected as

the ROC curve in Figure 4.3 identified the strategy that ensured no false positives and no

false negatives. Actual testing followed suit exactly. The simulation results fully support

the use of the modified EWMA algorithm presented in this thesis for future smart grid

special protections systems that implement reputation based trust.
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5 Conclusion and Future Work

5.1 Chapter Overview

This chapter provides a conclusion of the work presented in this thesis. Just as

important, this chapter also provides recommendation for future research. The results of

the research in this thesis were so promising, that there are numerous follow-on

experiments that can and should be done with regard to the modified exponentially

weighted moving averages algorithm created herein.

5.2 Conclusions of Research

The main contribution of this thesis is the development and application of the

modified Exponentially Weighted Moving Algorithm EWMA algorithm, and its ability to

flawlessly function in the face varying numbers of bad (malicious or malfunctioning)

special protection system nodes. This algorithm and its application contained herein

should be implemented across current and future smart grid special protection system

implementations.

Simulation results support the use of the proposed modified EWMA reputation based

trust module in special protection systems within a smart grid environment. This

modification resulted in the ability to maintain the associated frequency above the

minimum acceptable frequency of 58.8 Hz in each of the 5, 10 and 15 bad node test cases

at the 95% confidence interval. With regard to the modified EWMA algorithm itself,

research concluded that the optimal λ and Trust Threshold create a trust module that is

able to determine good nodes with a 100% true positive accuracy, and 0% false positive

rate, resulting in a perfect classification scenario.

It is not the assertion of this researcher that the application of the modified EWMA

algorithm to specific SPS architecture will create a perfect classification strategy, but
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rather, that an optimal strategy will be revealed when the techniques described in this

thesis are applied. This optimal strategy, by definition, promises to maximize true

positives and minimize false positives.

Additionally, it is important to note that utilizing simulation frequencies and the

method in which the ”true” frequencies are determined was not a primal factor in this

research. Rather, the frequencies, and how they were measured, are only representative of

the type of data that that can be imputed into the decision cycle of a reputation based trust

special protection system. Future smart grid technologies and emerging SCADA intrusion

detection technologies promise to increase the quantity of data available to make smarter

trust calculations.

5.3 Recommendations for Future Research

Although not always attainable, a perfect classification for each specific application,

as was realized in this research, is the goal for implementation at each field site. To this

end, there are numerous recommendations for future research:

• As briefly touched upon in Section 5.2, there are numerous inputs that the smart

grid promises to make available as possible inputs to the trust calculation of the

future (e.g., demand response participation, amount of load drawn by the node and

the nodes ability/willingness to contribute power in the event of an emergency).

These, as well as bolt-on technologies that have been created could serve as

additional inputs to future iterations of this research. An example of one such input

is a SCADA intrusion detection systems that monitors the SCADA network or

system activities for malicious activities or policy violations. It is theorized that

such inputs should weigh quite heavily as they could be alerting on an actual

malicious event.
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In addition to λ, these additional weighing factors can be included, and an optimal

strategy can be subsequently determine based upon all inputs and their associated

weights.

• The current simulation environment utilizes a window size of 16 to calculate the

modified EWMA trust values. Due to the fact that data is continuously being

generated and monitored within the smart grid, the actual window could be quite

large. This large window promises to give an even better estimate of the actual trust

value, as there is certainly more historical data on which to base the final trust value.

To this end, additional simulations were conducted to see exactly where the current

Optimal Trust value fails as depicted in Figure 5.1.
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Figure 5.1: Comparison of 5, 10, 15-21 Bad Node Test Cases with Optimal Trust Module
(λ = 0.1, Trust Threshold - 0.5) at 95% Confidence Interval

With the current window size, the most bad nodes that the system can manage, while

ensuring that the minimum acceptable frequency is maintained with 95% confidence
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is 19. Perhaps a larger window size will allow for a more bad-node-tolerant system.

In exploring this facet of the algorithm, one must weight the cost of additional

storage capacity for larger histories vs the desire to generate a more accurate trust.

• It is important to determine the robustness and appropriateness of the modified

EWMA enhanced trust module across a variety of simulation environments.

Numerous electrical power simulations exist, and the applicability of this algorithm

to multiple testing environments will only lend credibly to its value and need for

immediate real-world implementation.

In summary, implementation of a modified EWMA within a reputation based special

protection system does account for each scenario that an electrical power engineer may

face in the field. Instead, this research demonstrates that it provides a robust algorithm to

incorporate within and test these challenges and/or opportunities upon.
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Appendix: Receiver Operating Characteristic Data

Table A.1: Receiver Operating Characteristic Data Used to Determine Appropriate λ and
Trust Threshold Values (1 of 2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
True Positives (TP) 576 576 576 576 561 440 207 119 34
False Positives (FP) 502 392 271 116 71 0 0 0 0
True Negatives (TN) 38 148 269 424 469 540 540 540 540
False Negatives (FN) 0 0 0 0 15 136 369 457 542

1.00 1.00 1.00 1.00 0.97 0.76 0.36 0.21 0.06
0.93 0.73 0.50 0.21 0.13 0.00 0.00 0.00 0.00

True Positives (TP) 576 576 576 576 576 464 326 124 64
False Positives (FP) 484 373 208 83 0 0 0 0 0
True Negatives (TN) 56 167 332 457 540 540 540 540 540
False Negatives (FN) 0 0 0 0 0 112 250 452 512

1.00 1.00 1.00 1.00 1.00 0.81 0.57 0.22 0.11
0.90 0.69 0.39 0.15 0.00 0.00 0.00 0.00 0.00

True Positives (TP) 576 576 576 540 499 462 332 148 106
False Positives (FP) 412 373 224 117 67 36 0 0 0
True Negatives (TN) 128 167 316 423 473 504 540 540 540
False Negatives (FN) 0 0 0 36 77 114 244 428 470

1.00 1.00 1.00 0.94 0.87 0.80 0.58 0.26 0.18
0.76 0.69 0.41 0.22 0.12 0.07 0.00 0.00 0.00

True Positives (TP) 576 576 540 540 540 427 332 177 124
False Positives (FP) 412 357 224 139 36 36 36 0 0
True Negatives (TN) 128 183 316 401 504 504 504 540 540
False Negatives (FN) 0 0 36 36 36 149 244 399 452

1.00 1.00 0.94 0.94 0.94 0.74 0.58 0.31 0.22
0.76 0.66 0.41 0.26 0.07 0.07 0.07 0.00 0.00

True Positives (TP) 576 540 540 540 520 427 351 260 147
False Positives (FP) 378 296 207 139 52 36 36 36 0
True Negatives (TN) 162 244 333 401 488 504 504 504 540
False Negatives (FN) 0 36 36 36 56 149 225 316 429

1.00 0.94 0.94 0.94 0.90 0.74 0.61 0.45 0.26
0.70 0.55 0.38 0.26 0.10 0.07 0.07 0.07 0.00

True Positives (TP) 559 540 540 520 460 460 377 298 182
False Positives (FP) 362 262 197 100 100 52 36 36 19
True Negatives (TN) 178 278 343 440 440 488 504 504 521
False Negatives (FN) 17 36 36 56 116 116 199 278 394

0.97 0.94 0.94 0.90 0.80 0.80 0.65 0.52 0.32
0.67 0.49 0.36 0.19 0.19 0.10 0.07 0.07 0.04
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Table A.2: Receiver Operating Characteristic Data Used to Determine Appropriate λ and
Trust Threshold Values (2 of 2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
True Positives (TP) 540 540 520 460 460 460 445 343 240
False Positives (FP) 312 235 121 100 100 100 52 36 36
True Negatives (TN) 228 305 419 440 440 440 488 504 504
False Negatives (FN) 36 36 56 116 116 116 131 233 336

0.94 0.94 0.90 0.80 0.80 0.80 0.77 0.60 0.42
0.58 0.44 0.22 0.19 0.19 0.19 0.10 0.07 0.07

True Positives (TP) 540 540 460 460 460 460 460 343 343
False Positives (FP) 235 235 100 100 100 100 100 36 36
True Negatives (TN) 305 305 440 440 440 440 440 504 504
False Negatives (FN) 36 36 116 116 116 116 116 233 233

0.94 0.94 0.80 0.80 0.80 0.80 0.80 0.60 0.60
0.44 0.44 0.19 0.19 0.19 0.19 0.19 0.07 0.07

True Positives (TP) 540 460 460 460 460 460 460 460 343
False Positives (FP) 235 100 100 100 100 100 100 100 36
True Negatives (TN) 305 440 440 440 440 440 440 440 504
False Negatives (FN) 36 116 116 116 116 116 116 116 233

0.94 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.60
0.44 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.07

True Positives (TP) 460 460 460 460 460 460 460 460 460
False Positives (FP) 100 100 100 100 100 100 100 100 100
True Negatives (TN) 440 440 440 440 440 440 440 440 440
False Negatives (FN) 116 116 116 116 116 116 116 116 116

0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

True Positives (TP) 460 460 460 460 460 460 460 460 460
False Positives (FP) 111 111 112 107 106 111 111 100 100
True Negatives (TN) 429 429 428 433 434 429 429 440 440
False Negatives (FN) 116 116 116 116 116 116 116 116 116

0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
0.21 0.21 0.21 0.20 0.20 0.21 0.21 0.19 0.19
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